im2col解析2

im2col表示image to column,将图像转换成列向量

卷积操作步骤:首先将卷积核映射到x_padded左上角,然后沿着行方向操作,每次滑动stride距离;到达最右端后,将卷积核往列方向滑动stride距离,再实现从左到右的滑动

图像转列向量

在以下操作中,假设感受野大小为field_height = field_width = 2,零填充padding = 0,步长stride = 2

2维图像

以(3,3)大小矩阵为例

1
2
3
4
5
>>> a = np.arange(9).reshape(3,3)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])

那么得到的局部连接数为

\[ (3 - 2 + 2*0)/1 + 1 = 2\\ num = 2*2 = 4 \]

所以共有4个局部连接,分别是

\[ \begin{bmatrix} 0 & 1\\ 3 & 4 \end{bmatrix}\ \ \begin{bmatrix} 1 & 2\\ 4 & 5 \end{bmatrix}\ \ \begin{bmatrix} 3 & 4\\ 6 & 7 \end{bmatrix} \begin{bmatrix} 4 & 5\\ 7 & 8 \end{bmatrix} \]

其坐标分别为

\[ \begin{bmatrix} (0,0) & (0,1)\\ (1,0) & (1,1) \end{bmatrix}\ \ \begin{bmatrix} (0,1) & (0,2)\\ (1,1) & (1,2) \end{bmatrix}\ \ \begin{bmatrix} (1,0) & (1,1)\\ (2,0) & (2,1) \end{bmatrix} \begin{bmatrix} (1,1) & (1,2)\\ (2,1) & (2,2) \end{bmatrix} \]

将其列向量化,可得

\[ matrix= \begin{bmatrix} 0 & 1 & 3 & 4\\ 1 & 2 & 4 & 5\\ 3 & 4 & 6 & 7\\ 4 & 5 & 7 & 8 \end{bmatrix} \]

\[ indexs= \begin{bmatrix} (0,0) & (0,1) & (1,0) & (1,1)\\ (0,1) & (0,2) & (1,1) & (1,2)\\ (1,0) & (1,1) & (2,0) & (2,1)\\ (1,1) & (1,2) & (2,1) & (2,2) \end{bmatrix} \]

进行行列坐标分离

\[ rows_{index}= \begin{bmatrix} 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 1\\ 1 & 1 & 2 & 2\\ 1 & 1 & 2 & 2 \end{bmatrix} \]

\[ columns_{index}= \begin{bmatrix} 0 & 1 & 0 & 1\\ 1 & 2 & 1 & 2\\ 0 & 1 & 0 & 1\\ 1 & 2 & 1 & 2 \end{bmatrix} \]

对卷积核而言,每行的行坐标一致,共有field_width个,每个卷积核有field_height

1
2
3
4
# i0 = np.repeat(np.arange(field_height), field_width)
>>> i0 = np.repeat(np.arange(2), 2)
>>> i0
array([0, 0, 1, 1])

每行共有out_width个局部连接矩阵,每个矩阵相隔stride,共有out_height

1
2
3
4
# i1 = stride * np.repeat(np.arange(out_height), out_width)
>>> i1 = 1 * np.repeat(np.arange(2), 2)
>>> i1
array([0, 0, 1, 1])

对于局部连接矩阵的行坐标为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# i = i0.reshape(-1, 1) + i1.reshape(1, -1)
>>> i0.reshape(-1,1)
array([[0],
[0],
[1],
[1]])
>>> i1.reshape(1,-1)
array([[0, 0, 1, 1]])
>>> i = i0.reshape(-1,1)+i1.reshape(1,-1)
>>> i
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2]])

同样的,对于卷积核的列来说,其相邻列相差1,长field_width,共有field_height

1
2
3
4
# j0 = np.tile(np.arange(field_width), field_height * C)
>>> j0 = np.tile(np.arange(2),2)
>>> j0
array([0, 1, 0, 1])

每行有out_width个局部连接矩阵,矩阵之间相差stride步长,同一列矩阵相对于该行最左侧的距离相同

1
2
3
4
# j1 = stride * np.tile(np.arange(out_width), out_height)
>>> j1 = 1*np.tile(np.arange(2), 2)
>>> j1
array([0, 1, 0, 1])

计算局部连接矩阵的行坐标

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# j = j0.reshape(-1, 1) + j1.reshape(1, -1)
>>> j0.reshape(-1,1)
array([[0],
[1],
[0],
[1]])
>>> j1.reshape(1,-1)
array([[0, 1, 0, 1]])
>>> j = j0.reshape(-1,1) + j1.reshape(1,-1)
>>> j
array([[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2]])

得到列向量矩阵的行坐标和列坐标后,求取局部连接矩阵的列向量矩阵

1
2
3
4
5
>>> a[i,j]
array([[0, 1, 3, 4],
[1, 2, 4, 5],
[3, 4, 6, 7],
[4, 5, 7, 8]])

3维图像

如果图像有多通道,每个通道图像的卷积操作一致,局部连接总数不变,仅扩展每个卷积矩阵的大小,所以仅需在行/列坐标矩阵的列方向扩展即可

比如有\(2\times 3\times 3\)大小图像,通道数为2

1
2
3
4
5
6
7
8
9
>>> a = np.arange(18).reshape(2,3,3)
>>> a
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],

[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]])

局部连接矩阵大小为\(2\times 2\times 2\),比如

1
2
3
4
5
array([[[ 0,  1],
[ 3, 4],

[[ 9, 10],
[12, 13]]])

对于行坐标矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
>>> i0 = np.repeat(np.arange(2), 2)
>>> i0
array([0, 0, 1, 1])
>>> i0 = np.tile(i0, 2)
>>> i0
array([0, 0, 1, 1, 0, 0, 1, 1])

>>> i1 = 1 * np.repeat(np.arange(2), 2)
>>> i1
array([0, 0, 1, 1])

>>> i = i0.reshape(-1,1) + i1.reshape(1, -1)
>>> i
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2],
[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2]])

对于列坐标矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> j0 = np.tile(np.arange(2), 2*2)
>>> j0
array([0, 1, 0, 1, 0, 1, 0, 1])
>>> j1 = 1 * np.tile(np.arange(2), 2)
>>> j1
array([0, 1, 0, 1])
>>> j = j0.reshape(-1, 1) + j1.reshape(1, -1)
>>> j
array([[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2]])

还需要计算通道向量k,用于指定哪个通道图像

1
2
3
4
5
6
7
8
9
10
>>> k = np.repeat(np.arange(2), 2*2).reshape(-1,1)
>>> k
array([[0],
[0],
[0],
[0],
[1],
[1],
[1],
[1]])

最后求取局部连接矩阵的列向量矩阵

1
2
3
4
5
6
7
8
9
>>> a[k,i,j]
array([[ 0, 1, 3, 4],
[ 1, 2, 4, 5],
[ 3, 4, 6, 7],
[ 4, 5, 7, 8],
[ 9, 10, 12, 13],
[10, 11, 13, 14],
[12, 13, 15, 16],
[13, 14, 16, 17]])

4维图像

批量处理多通道图像,比如批量图像数据大小为\(2\times 2\times 3\times 3\),共2张图片,每张图像2通道,大小为\(3\times 3\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> a = np.arange(36).reshape(2,2,3,3)
>>> a
array([[[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],

[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]],


[[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]],

[[27, 28, 29],
[30, 31, 32],
[33, 34, 35]]]])

对于行/列坐标矩阵i,j以及通道向量k3维图像操作一致

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
>>> a[:,k,i,j]
array([[[ 0, 1, 3, 4],
[ 1, 2, 4, 5],
[ 3, 4, 6, 7],
[ 4, 5, 7, 8],
[ 9, 10, 12, 13],
[10, 11, 13, 14],
[12, 13, 15, 16],
[13, 14, 16, 17]],

[[18, 19, 21, 22],
[19, 20, 22, 23],
[21, 22, 24, 25],
[22, 23, 25, 26],
[27, 28, 30, 31],
[28, 29, 31, 32],
[30, 31, 33, 34],
[31, 32, 34, 35]]])
>>> a[:,k,i,j].shape
(2, 8, 4)

得到的是一个3维数据体,第一维表示图像数,第二维表示单个矩阵向量,第三维表示每个图片的局部矩阵数

先进行维数转换,再变形为2维矩阵

1
2
3
4
5
6
7
8
9
10
11
12
>>> c = np.transpose(b, (1,2,0))
>>> c.shape
(8, 4, 2)
>>> c.reshape(8, -1)
array([[ 0, 18, 1, 19, 3, 21, 4, 22],
[ 1, 19, 2, 20, 4, 22, 5, 23],
[ 3, 21, 4, 22, 6, 24, 7, 25],
[ 4, 22, 5, 23, 7, 25, 8, 26],
[ 9, 27, 10, 28, 12, 30, 13, 31],
[10, 28, 11, 29, 13, 31, 14, 32],
[12, 30, 13, 31, 15, 33, 16, 34],
[13, 31, 14, 32, 16, 34, 17, 35]])

最后得到了2维矩阵,每列表示一个局部连接矩阵向量,其排列方式为依次加入每个图像的相同位置局部连接矩阵,再向左向下滑动(im2col.py实现方式

如果想要先完成单个图像所有局部连接矩阵,再进行下一个图像的转换,可以修改维数变换如下

1
2
3
4
5
6
7
8
9
10
11
12
>>> c = np.transpose(b, (1,0,2))
>>> c.shape
(8, 2, 4)
>>> c.reshape(8, -1)
array([[ 0, 1, 3, 4, 18, 19, 21, 22],
[ 1, 2, 4, 5, 19, 20, 22, 23],
[ 3, 4, 6, 7, 21, 22, 24, 25],
[ 4, 5, 7, 8, 22, 23, 25, 26],
[ 9, 10, 12, 13, 27, 28, 30, 31],
[10, 11, 13, 14, 28, 29, 31, 32],
[12, 13, 15, 16, 30, 31, 33, 34],
[13, 14, 16, 17, 31, 32, 34, 35]])

列向量转图像

将图像转列向量小节中得到的列向量矩阵重新映射回图像

2维图像

已知图像大小为\(3\times 3\),卷积核大小为\(2\times 2\),步长为2,零填充为0

1
2
3
4
5
6
7
8
9
10
11
>>> a = np.arange(9).reshape(3,3)
>>> a
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
# 列向量矩阵
>>> a[i,j]
array([[0, 1, 3, 4],
[1, 2, 4, 5],
[3, 4, 6, 7],
[4, 5, 7, 8]])

根据图像数据和参数获取行/列坐标矩阵

1
2
3
4
5
6
7
8
9
10
>>> i
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2]])
>>> j
array([[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2]])

获取2维列矩阵

1
2
3
4
5
6
>>> cols = a[i,j]
>>> cols
array([[0, 1, 3, 4],
[1, 2, 4, 5],
[3, 4, 6, 7],
[4, 5, 7, 8]])

2维列矩阵映射到图像

1
2
3
4
5
6
7
8
9
10
>>> b = np.zeros(a.shape)
>>> b
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>> np.add.at(b, (i,j), cols)
>>> b
array([[ 0., 2., 2.],
[ 6., 16., 10.],
[ 6., 14., 8.]])

反向映射得到的图像数据和原先图像数据不一致,因为卷积操作中许多下标的位置被多次采集

如果想要得到原图,需要除以叠加的倍数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
>>> c = np.zeros(a.shape)
>>> c
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>> c = np.ones(a.shape)
>>> c
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
>>> cols_c = c[i,j]
>>> cols_c
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
>>> d = np.zeros(c.shape)
>>> d
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>> np.add.at(d, (i,j), cols_c)
>>> d
array([[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]])
>>> b/d
array([[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]])
>>> b/d == a
array([[ True, True, True],
[ True, True, True],
[ True, True, True]])

3维图像

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
>>> a = np.arange(18).reshape(2,3,3)
>>> a
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],

[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]])

>>> i
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2],
[0, 0, 1, 1],
[0, 0, 1, 1],
[1, 1, 2, 2],
[1, 1, 2, 2]])

>>> j
array([[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2],
[0, 1, 0, 1],
[1, 2, 1, 2]])

>>> k
array([[0],
[0],
[0],
[0],
[1],
[1],
[1],
[1]])

>>> cols = a[k,i,j]
>>> cols
array([[ 0, 1, 3, 4],
[ 1, 2, 4, 5],
[ 3, 4, 6, 7],
[ 4, 5, 7, 8],
[ 9, 10, 12, 13],
[10, 11, 13, 14],
[12, 13, 15, 16],
[13, 14, 16, 17]])

反向计算图像

1
2
3
4
5
6
7
8
9
>>> np.add.at(b, (k, i, j), cols)
>>> b
array([[[ 0., 2., 2.],
[ 6., 16., 10.],
[ 6., 14., 8.]],

[[ 9., 20., 11.],
[24., 52., 28.],
[15., 32., 17.]]])

除以叠加倍数,转变回原图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
>>> c = np.ones(a.shape)
>>> cols_c = c[k,i,j]
>>> cols_c
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
>>> d = np.zeros(c.shape)
>>> d
array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])
>>> np.add.at(d, (k,i,j), cols_c)
>>> d
array([[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]],

[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]]])
>>> b/d
array([[[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]],

[[ 9., 10., 11.],
[12., 13., 14.],
[15., 16., 17.]]])
>>> b/d == a
array([[[ True, True, True],
[ True, True, True],
[ True, True, True]],

[[ True, True, True],
[ True, True, True],
[ True, True, True]]])

4维图像

最终要实现的是批量图片列向量矩阵的反卷积操作

从批量图像数据中通过坐标矩阵获取的列向量矩阵是3维大小,还需要通过维数转换和变形

列向量转图像需要执行反向操作,首先进行数据变形,再进行维数转换,最后通过坐标矩阵叠加

在上一小节中最后得到了两种排列的列向量矩阵,一种是先提取同一位置局部连接矩阵,另一种是先提取同一图片局部连接矩阵

如果前向操作如下(第二种)

1
2
3
4
5
6
7
8
9
10
11
12
>>> cols = np.transpose(b, (1,2,0))
>>> cols.shape
(8, 4, 2)
>>> cols.reshape(8, -1)
array([[ 0, 1, 3, 4, 18, 19, 21, 22],
[ 1, 2, 4, 5, 19, 20, 22, 23],
[ 3, 4, 6, 7, 21, 22, 24, 25],
[ 4, 5, 7, 8, 22, 23, 25, 26],
[ 9, 10, 12, 13, 27, 28, 30, 31],
[10, 11, 13, 14, 28, 29, 31, 32],
[12, 13, 15, 16, 30, 31, 33, 34],
[13, 14, 16, 17, 31, 32, 34, 35]])

那么反向操作为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
>>> N=2
>>> cols_reshaped = cols.reshape(cols.shape[0], N, -1)
>>> cols_reshaped.shape
(8, 2, 4)
>>> np.transpose(cols_reshaped, (1,0,2))
array([[[ 0, 1, 3, 4],
[ 1, 2, 4, 5],
[ 3, 4, 6, 7],
[ 4, 5, 7, 8],
[ 9, 10, 12, 13],
[10, 11, 13, 14],
[12, 13, 15, 16],
[13, 14, 16, 17]],

[[18, 19, 21, 22],
[19, 20, 22, 23],
[21, 22, 24, 25],
[22, 23, 25, 26],
[27, 28, 30, 31],
[28, 29, 31, 32],
[30, 31, 33, 34],
[31, 32, 34, 35]]])

批量图片大小为\(2\times 2\times 3\times 3\),得到最终的反向结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
b = np.zeros(a.shape)
>>> np.add.at(b, (slice(None), k, i,j), cols_reshaped)
>>> b
array([[[[ 0., 2., 2.],
[ 6., 16., 10.],
[ 6., 14., 8.]],

[[ 9., 20., 11.],
[ 24., 52., 28.],
[ 15., 32., 17.]]],


[[[ 18., 38., 20.],
[ 42., 88., 46.],
[ 24., 50., 26.]],

[[ 27., 56., 29.],
[ 60., 124., 64.],
[ 33., 68., 35.]]]])

除以叠加倍数,得到最初的图像

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
>>> c = np.ones(a.shape)
>>> cols_c = c[:,k,i,j]
>>> cols_c
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
>>> d = np.zeros(c.shape)
>>> d
array([[[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]],


[[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]]])
>>> np.add.at(d, (slice(None), k,i,j), cols_c)
>>> d
array([[[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]],

[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]]],


[[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]],

[[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]]]])
>>> b/d
array([[[[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]],

[[ 9., 10., 11.],
[12., 13., 14.],
[15., 16., 17.]]],


[[[18., 19., 20.],
[21., 22., 23.],
[24., 25., 26.]],

[[27., 28., 29.],
[30., 31., 32.],
[33., 34., 35.]]]])
>>> b/d == a
array([[[[ True, True, True],
[ True, True, True],
[ True, True, True]],

[[ True, True, True],
[ True, True, True],
[ True, True, True]]],


[[[ True, True, True],
[ True, True, True],
[ True, True, True]],

[[ True, True, True],
[ True, True, True],
[ True, True, True]]]])

im2col.py

im2col.py实现代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from builtins import range
import numpy as np


def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1):
# First figure out what the size of the output should be
N, C, H, W = x_shape
assert (H + 2 * padding - field_height) % stride == 0
assert (W + 2 * padding - field_height) % stride == 0
out_height = (H + 2 * padding - field_height) / stride + 1
out_width = (W + 2 * padding - field_width) / stride + 1

i0 = np.repeat(np.arange(field_height), field_width)
i0 = np.tile(i0, C)
i1 = stride * np.repeat(np.arange(out_height), out_width)
j0 = np.tile(np.arange(field_width), field_height * C)
j1 = stride * np.tile(np.arange(out_width), out_height)
i = i0.reshape(-1, 1) + i1.reshape(1, -1)
j = j0.reshape(-1, 1) + j1.reshape(1, -1)

k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1)

return (k, i, j)


def im2col_indices(x, field_height, field_width, padding=1, stride=1):
""" An implementation of im2col based on some fancy indexing """
# Zero-pad the input
p = padding
x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant')

k, i, j = get_im2col_indices(x.shape, field_height, field_width, padding,
stride)

cols = x_padded[:, k, i, j]
C = x.shape[1]
cols = cols.transpose(1, 2, 0).reshape(field_height * field_width * C, -1)
return cols


def col2im_indices(cols, x_shape, field_height=3, field_width=3, padding=1,
stride=1):
""" An implementation of col2im based on fancy indexing and np.add.at """
N, C, H, W = x_shape
H_padded, W_padded = H + 2 * padding, W + 2 * padding
x_padded = np.zeros((N, C, H_padded, W_padded), dtype=cols.dtype)
k, i, j = get_im2col_indices(x_shape, field_height, field_width, padding,
stride)
cols_reshaped = cols.reshape(C * field_height * field_width, -1, N)
cols_reshaped = cols_reshaped.transpose(2, 0, 1)
np.add.at(x_padded, (slice(None), k, i, j), cols_reshaped)
if padding == 0:
return x_padded
return x_padded[:, :, padding:-padding, padding:-padding]

包含两部分功能:图像转列向量以及列向量转图像

函数get_im2col_indices的功能是计算单个图像行/列坐标矩阵以及通道向量

函数im2col_indices的功能是实现图像转列向量

函数col2im_indices的功能是实现列向量转图像

注意,col2im_indices得到的图像不等于原图,是叠加后的结果

相关阅读