1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
""" 梯度下降法计算线性回归问题 """
import matplotlib.pyplot as plt import numpy as np
def load_ex1_multi_data(): """ 加载多变量数据 """ path = '../data/coursera2.txt' datas = [] with open(path, 'r') as f: lines = f.readlines() for line in lines: datas.append(line.strip().split(',')) data_arr = np.array(datas) data_arr = data_arr.astype(np.float)
X = data_arr[:, :2] Y = data_arr[:, 2] return X, Y
def load_machine_data(): """ 加载计算机硬件数据 """ data = np.loadtxt('../data/machine.data', delimiter=',', dtype=np.str)
x = data[:, 2:8].astype(np.float) y = data[:, 8].astype(np.float)
return x, y
def draw_loss(loss_list): """ 绘制损失函数值 """ fig = plt.figure() plt.plot(loss_list)
plt.show()
def init_weight(size): """ 初始化权重,使用均值为0,方差为1的标准正态分布 """ return np.random.normal(loc=0.0, scale=1.0, size=size)
def compute_loss(w, x, y): """ 计算损失值 """ n = y.shape[0] return (x.dot(w) - y).T.dot(x.dot(w) - y) / n
def using_batch_gradient_descent(): """ 批量梯度下降 """ x, y = load_machine_data() extend_x = np.insert(x, 0, values=np.ones(x.shape[0]), axis=1) w = init_weight(extend_x.shape[1])
n = y.shape[0] epoches = 50 alpha = 1e-9 loss_list = [] for i in range(epoches): temp = w - alpha * extend_x.T.dot(extend_x.dot(w) - y) / n w = temp loss_list.append(compute_loss(w, extend_x, y)) draw_loss(loss_list)
def using_stochastic_gradient_descent(): """ 随机梯度下降 """ x, y = load_machine_data() extend_x = np.insert(x, 0, values=np.ones(x.shape[0]), axis=1) w = init_weight(extend_x.shape[1]) print(w.shape)
np.random.shuffle(extend_x) print(extend_x.shape) print(y.shape)
n = y.shape[0] epoches = 20 alpha = 1e-9 loss_list = [] for i in range(epoches): for j in range(n): temp = w - alpha * (extend_x[j].dot(w) - y[j]) * extend_x[j].T / 2 w = temp loss_list.append(compute_loss(w, extend_x, y)) draw_loss(loss_list)
def using_small_batch_gradient_descent(): """ 小批量梯度下降 """ x, y = load_machine_data() extend_x = np.insert(x, 0, values=np.ones(x.shape[0]), axis=1) w = init_weight(extend_x.shape[1]) print(w.shape)
np.random.shuffle(extend_x) print(extend_x.shape) print(y.shape)
batch_size = 16
n = y.shape[0] epoches = 20 alpha = 5e-9 loss_list = [] for i in range(epoches): for j in list(range(0, n, batch_size)): temp = w - alpha * extend_x[j:j + batch_size].T.dot( extend_x[j:j + batch_size].dot(w) - y[j:j + batch_size]) / batch_size w = temp loss_list.append(compute_loss(w, extend_x, y)) draw_loss(loss_list)
if __name__ == '__main__': using_stochastic_gradient_descent()
|
未找到相关的 Issues 进行评论
请联系 @zjykzj 初始化创建