1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
""" @date: 2020/3/1 下午2:38 @file: svm.py @author: zj @description: """
import time import copy import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import torchvision.transforms as transforms from torchvision.datasets import MNIST
def load_data(): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])
data_loaders = {} data_sizes = {} for name in ['train', 'val']: data_set = MNIST('./data', download=True, transform=transform)
data_loader = DataLoader(data_set, shuffle=True, batch_size=128, num_workers=8) data_loaders[name] = data_loader data_sizes[name] = len(data_set) return data_loaders, data_sizes
def hinge_loss(outputs, labels): """ 折页损失计算 :param outputs: 大小为(N, num_classes) :param labels: 大小为(N) :return: 损失值 """ num_labels = len(labels) corrects = outputs[range(num_labels), labels].unsqueeze(0).T
margin = 1.0 margins = outputs - corrects + margin loss = torch.sum(torch.max(margins, 1)[0]) / len(labels)
return loss
def train_model(data_loaders, model, criterion, optimizer, lr_scheduler, num_epochs=25, device=None): since = time.time()
best_model_weights = copy.deepcopy(model.state_dict()) best_acc = 0.0
for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10)
for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval()
running_loss = 0.0 running_corrects = 0
for inputs, labels in data_loaders[phase]: inputs = inputs.reshape(-1, 28 * 28) inputs = inputs.to(device) labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels)
if phase == 'train': loss.backward() optimizer.step()
running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': lr_scheduler.step()
epoch_loss = running_loss / data_sizes[phase] epoch_acc = running_corrects.double() / data_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_weights = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_weights) return model
if __name__ == '__main__': device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data_loaders, data_sizes = load_data()
model = nn.Linear(28 * 28, 10).to(device) criterion = hinge_loss optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) lr_schduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
train_model(data_loaders, model, criterion, optimizer, lr_schduler, num_epochs=25, device=device)
|